

MULTISPECTRAL OPTOACOUSTIC TOMOGRAPHY ACUITY

MSOT Acuity* Acuity Echo

- Imaging system for clinical research
- Tomographic handheld real-time imaging
- Anatomical, functional and molecular contrast

*C \in marked as a medical device

Acuity

iTheraMedical

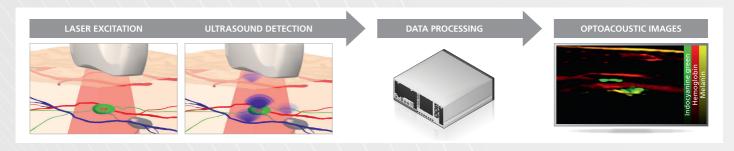
MSOT TECHNOLOGY

Imaging sequence:

- Illumination of tissue with laser pulses at multiple wavelengths
- Detection of induced ultrasound pressure waves
- Image reconstruction to show optical absorption in tissue
- Spectral unmixing to analyze individual absorbers

Technology benefits:

Combines the molecular specificity of optical imaging with the depth and spatiotemporal resolution of ultrasound


Molecular specificity:

Identify and quantify disease-related biomarkers, revealing endogenous absorbers and injected contrast agents

Depth & spatiotemporal resolution:

Acquire soft tissue images with spatial resolution down to 80 μm^* in vivo and in real time

*Spatial resolution down to 400 μm for the CE marked detector

0

OPUS:

hybrid OPtoacoustic & UltraSound imaging

Ultrasound imaging integrated in the MSOT Acuity *Echo* enables the visualization of both tomographic optoacoustic and ultrasound information at the same time, thus providing additional and complementary information on tissue morphology.

MSOT VS. OTHER IMAGING MODALITIES

Imaging is an essential tool for medical diagnosis. Various technologies have evolved over time, each one providing specific benefits – but also limitations. Innovation in biomedical imaging facilitates new avenues for diagnosis and treatment of diseases.

X-ray, ultrasound and magnetic resonance imaging (MRI) provide anatomical information at high spatial resolution but with limited molecular specificity and sensitivity. On the other hand, positron emission tomography (PET) is a molecular imaging modality with high sensitivity, but suffers from low spatial resolution.

MSOT – Multispectral Optoacoustic Tomography is a novel imaging technology. Besides its high spatiotemporal resolution and sensitivity for optical contrast, MSOT imaging comes at relatively low cost and low burden of use, especially no ionizing radiation.

Modality	Spatial resolution	Temporal resolution	Sensitivity	Cost and infrastructure	Burden of use
MSOT	+	+	0	+	+
X-ray	+	0	-	+	$\sum (-\sum $
Ultrasound	+	+	-	+	+
MRI	+	0	-	- / /	0
PET/SPECT	_	-	+		

+ = favorable O = medium - = unfavorable

Adapted from Ntziachristos V and Razansky D, Molecular Imaging by Means of MSOT, Chem Rev. 2010 May 12;110(5):2783-94.

SYSTEM USE, COMPONENTS, ACCESSORIES/OPTIONS

SYSTEM USE

- Workflow comparable to that of conventional ultrasound
- Handheld detectors for flexible use
- Foot pedal and laser safety goggles allow safe use of the system
- One click acquisition of single images and image sequences

SYSTEM COMPONENTS

MSOT scanner hardware

- Mobile imaging platform with integrated highperformance workstation and adjustable screen
- Graphical user interface controlled via touchscreen and customized keyboard
- Detectors for different applications with variable center frequency, geometry, and size

viewMSOT[™] software

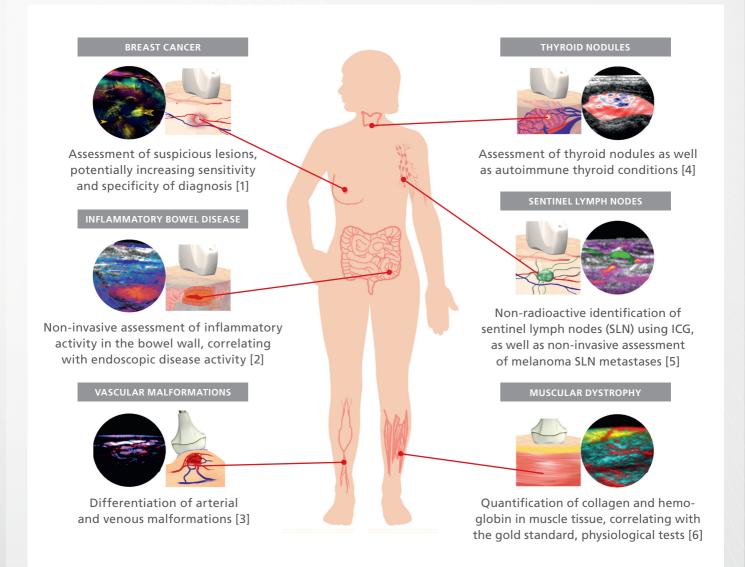
- Data management interface links scans to research subjects
- Application-specific presets enable change of acquisition settings
- Automated real-time spectral unmixing and signal quantification
- Wide range of tools for data analysis and export

ACCESSORIES AND OPTIONS

Accessories:

Options:

- Laser safety goggles
- Calibration phantom
- 2D and 3D detectors customized for particular application needs (2.5-10 MHz, 128-512 elements)
- Advanced software tools for image analysis
- Scan station for imaging of tissue specimens



VISUALIZED CHROMOPHORES

MSOT detects and visualizes signals that represent the spectrally distinct absorbance of chromophores in tissue. Research studies have proven the effective detection of endogenous chromophores such as hemoglobin, melanin and lipids as well as that of commonly used and clinically approved optical contrast agents such as indocyanine green (ICG) and methylene blue.

MSOT TRANSLATIONAL RESEARCH HIGHLIGHTS

MSOT has been applied in a variety of clinical research studies and has shown the potential to improve medical care in the future. Particular application areas include the following:

- [1] Diot G et al., Multispectral optoacoustic tomography (MSOT) of human breast cancer, Clin Cancer Res. 2017 Nov 15;23(22):6912-6922.
- [2] Knieling F et al., Multispectral Optoacoustic Tomography for Assessment of Crohn's Disease Activity, N Engl J Med. 2017 Mar 30;376(13):1292-1294.
- [3] Masthoff M et al., Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations, JAMA Dermatol. 2018 Dec 1;154(12):1457-1462.
- [4] Roll W et al., Multispectral optoacoustic tomography of benign and malignant thyroid disorders a pilot study, J Nucl Med. 2019 Mar 8.
- [5] Stoffels I et al., Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging, Sci Transl Med. 2015 Dec 9;7(317):317ra199.
- [6] Regensburger A et al., Multispectral Optoacoustic Tomography in the Extended Near Infrared Range for Non-invasive in vivo Detection of Collagens in Duchenne Muscular Dystrophy, (submitted).

For more information on the research, please see the original publications or:

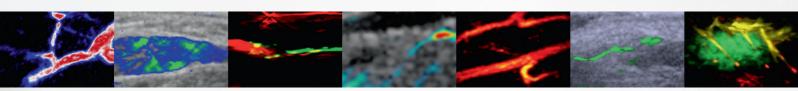
https://www.ithera-medical.com/ applications/clinical-research

TECHNICAL SPECIFICATIONS

pecifications	MSOT Acuity*	M	SOT Acuity Echo **		
mage acquisition					
Image rate (live display)/ single wavelength	up to 25 images per second				
Image rate (multispectral)	up to 12 images per second				
Yey system components					
SpectraPULSE™ illumination system					
Laser wavelength spectrum	Standard*: 680-980 nm Optional**: 660-1300 nm				
Pulse repetition rate	≤ 25 Hz (adjustable)				
Maximum pulse energy@750 nm	25 mJ				
Laser performance monitoring	Yes				
Wavelength tuning	Tuning time: < 10 ms Minimum step size: 1 nm				
RapidSCAN™ data acquisition electronic	s				
Channels for simultaneous acquisition	up to 512				
Sampling rate		up to 40 MS/s			
OPUS [™] hybrid ultrasound mode					
Transmit frequency	n/a		2-8 MHz**		
Image formation method	n/a		Synthetic aperture beamforming, spatial compounding**		
viewMSOT™					
Data management	Study data administration, creation of reports, data export				
Data acquisition	2D/3D**, single ima	2D/3D**, single images, image sequences, multispectral data sets			
Data processing	Image reconstruction, spectral unmixing, signal quantification				
Data analysis	Measurements, spectral analysis, color maps, image filters				
General technical specifications					
Hardware scanner console	Intel Core i7/Xeon, 32 GByte	e RAM, 4 TByte HDD data	storage, 24" TFT touchscreer		
Operating system	Windows 10 embedded				
External interfaces	1 GBit Ethernet, remote interlock connector				
Dimensions (width x depth x height weight)	73 x 91 x 152 cm 290 kg				
Power	16A/230VAC, 50/60 Hz				
Laser classification	Class 4				
TomoARC [™] detectors	Standard 2D*	Standard 3D**	Optional detectors**		
Angular coverage	125°	98°	90-180°		
Center frequency	4 MHz	8 MHz	2.5-10 MHz > 50%		
Number of elements	256	256-384	128-512		
Field of view	25 mm	15 x 15 mm	up to 30 20 x 20 mm		

VISIBLE AND INVISIBLE LASER RADIATION							
			Maximum O				

Maximum Output: 25 mJ Pulse duration: 4-7 ns Wavelengths: 660-1300 nm


AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION

*CE marked in Europe ** For investigational use only

*

CLASS 4 LASER PRODUCT IEC60825-1:2014

MKT-2-BR-01 v2.0

SELECTION OF RELATED PUBLICATIONS

• Regensburger A et al.,

Multispectral Optoacoustic Tomography in the Extended Near Infrared Range for Non-invasive *in vivo* Detection of Collagens in Duchenne Muscular Dystrophy, (submitted).

• Roll W et al.,

Multispectral optoacoustic tomography of benign and malignant thyroid disorders - a pilot study, J Nucl Med. 2019 Mar 8.

• Helfen A et al.,

Multispectral Optoacoustic Tomography: Intra- and Interobserver Variability Using a Clinical Hybrid Approach, J Clin Med. 2019 Jan 9;8(1).

• Masthoff M et al.,

Use of Multispectral Optoacoustic Tomography to Diagnose Vascular Malformations, JAMA Dermatol. 2018 Dec 1;154(12):1457-1462.

- Masthoff M et al., Multispectral optoacoustic tomography of systemic sclerosis, J Biophotonics. 2018 Nov;11(11):e201800155.
- Reber et al.,

Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients, Cell Metab. 2018 Mar 6;27(3):689-701.e4.

• Diot G et al.,

Multispectral optoacoustic tomography (MSOT) of human breast cancer, Clin Cancer Res. 2017 Nov 15;23(22):6912-6922.

• Knieling F et al.,

Multispectral Optoacoustic Tomography for Assessment of Crohn's Disease Activity, N Engl J Med. 2017 Mar 30;376(13):1292-1294.

- Stoffels I et al., Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging, Sci Transl Med. 2015 Dec 9;7(317):317ra199.
- McNally LR et al.,

Current and Emerging Clinical Applications of Multispectral Optoacoustic Tomography (MSOT) in Oncology, Clin Cancer Res. 2016 Jul 15;22(14):3432-9.

 Ntziachristos V and Razansky D, Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT), Chem Rev. 2010 May 12;110(5):2783-94.

iThera Medical GmbH Zielstattstrasse 13 D-81379 Munich
 Phone:
 +49 (0) 89 700 7449-0

 Fax:
 +49 (0) 89 700 7449-90

 Email:
 info@ithera-medical.com