Publications

Search publications from iThera users. By product. By application.

Filter by term

Field

Field
  • Preclinical (456)
  • Clinical (77)

Disease Area

Disease Area
  • Cancer (334)
  • Other (88)
  • Technology (32)
  • Inflammation (29)
  • Ischemia (21)

MSOT / RSOM

MSOT / RSOM
  • MSOT (495)
  • RSOM (32)

Organ System

Organ System
  • Reproductive (189)
  • Digestive (92)
  • Integumentary (60)
  • Cardiovascular (50)
  • Nervous (48)

Contrast Type

Contrast Type
  • Molecular (379)
  • Anatomical (118)
  • Functional (88)
  • Other (4)

Contrast Source

Contrast Source
  • Nanoparticle (273)
  • Hemoglobin (143)
  • Contrast agent dye (109)
  • Melanin (44)
  • Other (21)
Cheng H et al., Nanoscale. 2021 Jun 24;13(24):10816-10828.

An effective NIR laser/tumor-microenvironment co-responsive cancer theranostic nanoplatform with multi-modal imaging and therapies

Molecular
MSOT
Nanoparticle
Reproductive, Digestive
Cancer
Preclinical

Cancer is still a major threat to human health at present. Developing new types of integrated nanoplatforms for the accurate diagnosis and effective treatment of cancer is very significant. Herein, an intelligent dual-stage core-shell cancer theranostic nanoplatform (Fe3+@Au1Ag24@PbP) with NIR laser/tumor-microenvironment (TME) co-responsiveness and multi-modal imaging-therapy was successfully prepared, which was composed of the precisely structured oil-soluble Au1Ag24 nanoclusters (NCs) and Fe3+ ions easily assembled within the oil and aqueous phases of the polyethylene glycol (PEG) block grafted polyketal (PK) copolymer (PK-b-PEG, PbP) vesicles, respectively. In this system, we were delighted to find that the prepared Au1Ag24 NCs possess multi-photoresponsive properties, endowing the nanoplatform with photoacoustic (PA)/photothermal (PT) imaging and synergetic photothermal therapy (PTT)/photodynamic therapy (PDT) for cancer under near-infrared (NIR) laser irradiation. On the other hand, Fe3+ ions exhibit multi-TME response and regulation behaviors, including as catalysts for the decomposition of endogenous hydrogen peroxide (H2O2) in the solid tumor to produce O2 and as the oxidizing agent for the consumption of the intracellular GSH to avoid the reduction of the generated 1O2; therefore, the synchronously formed Fe2+ ions from the redox of Fe3+ with GSH could further react with H2O2 to produce hydroxyl radical (˙OH), which induced ferroptosis-based cancer treatment. The PbP shell possesses TME/pH sensitivity for controlled drug release and passive targeting, causing a large increase in Au1Ag24/Fe3+ accumulation within the weakly acidic tumor region and reducing the side effects on normal tissues. Both in vitro and in vivo experiments demonstrate that the Fe3+@Au1Ag24@PbP nanoplatform presented excellent PA/PT imaging-guided synergetic PTT/PDT/ferroptosis effects toward tumor cells and tumors. This integrating multi-responsive and multi-modal theranostic nanoplatform paves a new way for effective cancer therapy.

Sun L et al., Adv Healthc Mater. 2021 Jun 23;e2100867.

An Activatable Probe with Aggregation-Induced Emission for Detecting and Imaging Herbal Medicine Induced Liver Injury with Optoacoustic Imaging and NIR-II Fluorescence Imaging

Molecular
MSOT
Contrast agent dye
Digestive
Toxicity
Preclinical

Whilte herbal medicines are widely used for health promotion and therapy for chronic conditions, inappropriate use of them may cause adverse effects like liver injury, and accurately evaluating their hepatotoxicity is of great significance for public health. Herein, an activatable probe QY-N for diagnosing herbal-medicine-induced liver injury by detecting hepatic NO with NIR-II fluorescence and multispectral optoacoustic tomography (MSOT) imaging is demonstrated. The probe includes a bismethoxyphenyl-amine-containing dihydroxanthene serving as electron donor, a quinolinium as electron acceptor, and a butylamine as recognition group and fluorescence quencher. The hepatic level of NO reacts with butylamine, thereby generating the activated probe QY-NO which exhibits a red-shifted absorption band (700-850 nm) for optoacoustic imaging and generates strong emission (910-1110 nm) for NIR-II fluorescence imaging. QY-NO is aggregation-induced-emission (AIE) active, which ensures strong emission in aggregated state. QY-N is utilized in the triptolide-induced liver injury mouse model, and experimental results demonstrate the QY-N can be activated by hepatic NO and thus be used in detecting herbal-medicine-induced liver injury. The temporal and spatial information provided by three-dimensional MSOT images well delineates the site and size of liver injury. Moreover, QY-N has also been employed to monitor rehabilitation of liver injury during treatment process.

Stanicki D et al., J Mater Chem B. 2021 Jul 7;9(25):5055-5068.

Impact of the chain length on the biodistribution profiles of PEGylated iron oxide nanoparticles: a multimodal imaging study

Molecular
MSOT
Nanoparticle
Urinary
Cancer
Preclinical

Bimodal sub-5 nm superparamagnetic iron oxide nanoparticles (SPIO-5) coated with polyethylene glycol of different chain lengths (i.e. PEG-800, -2000 and -5000) have been prepared and characterized. Fluorescence properties have been obtained by mean of the grafting of a near-infrared-emitting dye (NIR-dye) onto the surface of the oxide, thanks to the carboxylic acid functions introduced towards an organosilane coating. Such modification allowed us to follow in vivo their biodistribution and elimination pathways by T1-w and T2-w high-field magnetic resonance imaging (MRI), as well as by optical and optoacoustic imaging. Interestingly, it has been highlighted that for a given composition, the thickness of the coating strongly influences the pharmacokinetic properties of the administrated SPIO-5.

Wu Y et al., Chem Soc Rev. 2021 Jun 11.

Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications

Molecular, Functional
MSOT
Contrast agent dye, Hemoglobin, Nanoparticle, Melanin, Collagen, Genetic reporter
Reproductive, Nervous, Integumentary, Digestive, Endrocrine, Lymphatic, Musculoskeletal
Cancer, Metabolic disorder, Inflammation, Fibrosis
Preclinical

Optoacoustic imaging is a hybrid biomedical imaging modality which collects ultrasound waves generated via photoexciting contrast agents in tissues and produces images of high resolution and penetration depth. As a functional optoacoustic imaging technique, multispectral optoacoustic imaging, which can discriminate optoacoustic signals from different contrast agents by illuminating samples with multi-wavelength lasers and then processing the collected data with specific algorithms, assists in the identification of a specific contrast agent in target tissues and enables simultaneous molecular and physiological imaging. Moreover, multispectral optoacoustic imaging can also generate three-dimensional images for biological tissues/samples with high resolution and thus holds great potential in biomedical applications. Contrast agents play essential roles in optoacoustic imaging, and they have been widely explored and applied as probes and sensors in recent years, leading to the emergence of a variety of new contrast agents. In this review, we aim to summarize the latest advances in emerging contrast agents, especially the activatable ones which can respond to specific biological stimuli, as well as their preclinical and clinical applications. We highlight their design strategies, discuss the challenges and prospects in multispectral optoacoustic imaging, and outline the possibility of applying it in clinical translation and public health services using synthetic contrast agents.

Gardner SH et al., Angew Chem Int Ed Engl. 2021 Jun 5.

A General Approach to Convert Hemicyanine Dyes into Highly Optimized Photoacoustic Scaffolds for Analyte Sensing

Molecular
MSOT
Contrast agent dye
Reproductive
Cancer
Preclinical

Most photoacoustic (PA) imaging agents are based on the repurposing of existing fluorescent dye platforms that exhibit non-optimal properties for PA applications. Herein, we introduce PA-HD, a new dye scaffold optimized for PA probe development that features a 4.8-fold increase in sensitivity and a red-shift of the λabs from 690 nm to 745 nm to enable ratiometric imaging. Computational modeling was used to elucidate the origin of these enhanced properties. To demonstrate the generalizability of our remodeling efforts, we developed three probes for β-galactosidase activity (PA-HD-Gal), nitroreductase activity (PA-HD-NTR), and H2 O2 (PA-HD-H2 O2 ). We generated two cancer models to evaluate PA-HD-Gal and PA-HD-NTR. We employed a murine model of Alzheimer’s disease to test PA-HD-H2 O2 . There, we observed a PA signal increase at 735 nm of 1.79±0.20-fold relative to background, indicating the presence of oxidative stress. These results were confirmed via ratiometric calibration, which was not possible using the parent HD platform.

Gao C et al., Acta Biomater. 2021 Jul 15;129:220-234.

Black SnO 2-x based nanotheranostic for imaging-guided photodynamic/photothermal synergistic therapy in the second near-infrared window

Molecular
MSOT
Nanoparticle
Reproductive, Integumentary
Cancer
Preclinical

The shallow penetration depth of photothermal agents in the first near-infrared (NIR-I) window significantly limits their therapeutic efficiency. Multifunctional nanotheranostic agents in the second near-infrared (NIR-II) window have drawn extensive attention for their combined treatment of tumors. Here, for the first time, we created oxygen-deficient black SnO2-x with strong NIR (700-1200 nm) light absorption with NaBH4 reduction from white SnO2. Hyaluronic acid (HA) could selectively target cancer cells overexpressed CD44 protein. After modification with HA, the obtained nanotheranostic SnO2-x@SiO2-HA showed high dispersity in aqueous solution and good biocompatibility. SnO2-x@SiO2-HA was confirmed to simultaneously generate enough hyperthermia and reactive oxygen species with single NIR-II (1064 nm) light irradiation. Because HA is highly affined to CD44 protein, SnO2-x@SiO2-HA has specific uptake by overexpressed CD44 cells and can be accurately transferred to the tumor site. Furthermore, tumor growth was significantly inhibited following synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) with targeted specificity under the guidance of photoacoustic (PA) imaging using 1064 nm laser irradiation in vivo. Moreover, SnO2-x@SiO2-HA accelerated wound healing. This work prominently extends the therapeutic utilization of semiconductor nanomaterials by changing their nanostructures and demonstrates for the first time that SnO2-x based therapeutic agents can accelerate wound healing. STATEMENT OF SIGNIFICANCE: The phototherapeutic efficacy of nanotheranostics by NIR-I lightirradiation was restricted owing to the limitation of tissue penetration and maximum permissible exposure. To overcome these limitations, we hereby fabricated a NIR-IIlight-mediated multifunctional nanotheranostic based on SnO2-x. The introduction of oxygen vacancy strategy was employed to construct full spectrum responsive oxygen-deficient SnO2-x, endowing outstanding photothermal conversion, and remarkable production activity of reactive oxygen species under NIR-II light activation. Tumor growth was significantly inhibited following synergistic PDT/PTT with targeted specificity under the guidance of photoacoustic imaging using 1064 nm laser irradiation in vivo. Our strategy not only expands the biomedical application of SnO2, but also providea method to develop other inorganic metal oxide-based nanosystems for NIR-II light-activated phototheranostic of cancers.

Contact us

Don’t hesitate to contact us if you have any questions about our technology, applications or products.