Take a new look at cancer.

The distinguishing MSOT characteristics are high spatial resolution, unparalleled molecular contrast combined with high sensitivity, real-time operation, cost-effectiveness, and the use of non-ionizing radiation. While some of the established imaging modalities attain some of these features, none combines them in one modality.

With its superior characteristics, MSOT can therefore image with superior characteristics cancer processes associated with tumor growth and treatment such as angiogenesis, cell proliferation, and apoptosis.

MSOT uses target-specific biomarkers to highlight tumor mass, cells and surrounding vessels. Real-time image acquisition and reconstruction further allows the observation of dynamic phenomena associated with tumor and tissue physiology, free of motion-related artifacts.

Image gallery

Visualization of apoptosis probe accumulation in tumor region
Visualization of apoptosis probe accumulation in tumor region
Visualization of apoptosis probe accumulation in tumor region
Simultaneous quantification of apoptosis probe and control dye dynamics
Optical Imaging of Cancer Heterogeneity with MSOT
Optical Imaging of Cancer Heterogeneity with MSOT
Imaging macrophage uptake into tumor
Imaging of gold nanorod labeled stem cells over time
Imaging gene delivery
SLN detection with MSOT
Non-invasive SLN status assessment in melanoma patients
MSOT guidance for SLN pathology
MSOT vs. FDG-PET/CT imaging of melanoma metastasis
  • Quiros I et al.,
    Optoacoustics delineates murine breast cancer models displaying angiogenesis and vascular mimicry,
    J Biophotonics. 2018 Mar 23:e201700359. DOI: 10.1002/jbio.201700359.
  • Neuschmelting V et al.,
    WST11 Vascular Targeted Photodynamic Therapy Effect Monitoring by Multispectral Optoacoustic Tomography (MSOT) in Mice,
    Theranostics. 2018 Jan 1;8(3):723-734. DOI: 10.7150/thno.20386. eCollection 2018.
  • Dey S et al.,
    The vascular disrupting agent combretastatin A-4 phosphate causes prolonged elevation of proteins involved in heme flux and function in resistant tumor cells,
    Oncotarget. 2018; 9:4090-4101. DOI: 10.18632/oncotarget.23734
  • Kannadorai RK et al.,
    Noninvasive in vivo multispectral optoacoustic imaging of apoptosis in triple negative breast cancer using indocyanine green conjugated phosphatidylserine monoclonal antibody,
    J Biomed Opt. 2016 Dec 1;21(12):126002. DOI: 10.1117/1.JBO.21.12.126002.
  • McNally LR et al.,
    Current and Emerging Clinical Applications of Multispectral Optoacoustic Tomography (MSOT) in Oncology,
    Clin Cancer Res. 2016 May 20. PII: clincanres.0573.2016.
  • Chen Q et al.,
    Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors,
    Biomaterials. 2016 May 3;98:23-30. DOI: 10.1016/j.biomaterials.2016.04.041.
  • Wen L et al.,
    Ultrasmall Biocompatible WO3- x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers,
    Adv Mater. 2016 May 2. DOI: 10.1002/adma.201506428.
  • Neuschmelting V et al.,
    Lymph Node Micrometastases and In-Transit Metastases from Melanoma: In Vivo Detection with Multispectral Optoacoustic Imaging in a Mouse Model,
    Radiology. 2016 Jul;280(1):137-50. DOI: 10.1148/radiol.2016160191.
  • Zeng J. et al.,
    pH-Responsive Fe(III)–Gallic Acid Nanoparticles for In Vivo Photoacoustic Imaging-Guided Photothermal Therapy,
    Adv Healthc Mater. 2016 Feb 4. DOI: 10.1002/adhm.201500898.
  • Ingo Stoffels et al.,
    Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging,
    Sci. Transl. Med. 09 Dec 2015. DOI: 10.1126/scitranslmed.aad1278.
  • Wenyuan Yin et al.,
    Tumor specific liposomes improve detection of pancreatic adenocarcinoma in vivo using OAT,
    J Nanobiotechnol (2015) 13:90. DOI 10.1186/s12951-015-0139-8.
  • Anil Khanal et al.,
    Tumor targeted mesoporous silica-coated gold nanorods facilitate detection of pancreatic tumors using Multispectral optoacoustic tomography,
    Nano Res. December 2015, Volume 8, Issue 12, pp 3864-3877. DOI 10.1007/s12274-015-0886-8.
  • Xie B et al.,
    Necrosis avid near infrared fluorescent cyanines for imaging cell death and their use to monitor therapeutic efficacy in mouse tumor models,
    Oncotarget. 2015 Oct 12. DOI: 10.18632/oncotarget.5498.
  • Charles W Kimbrough et al.,
    Targeting Acidity in Pancreatic Adenocarcinoma: Multispectral Optoacoustic Tomography Detects pH-low Insertion Peptide Probes in vivo,
    Clin Cancer Res. 2015 Jun 29. PII: clincanres.0314.2015.
  • Wantong Song et al.,
    Coadministration of Vascular Disrupting Agents and Nanomedicines to Eradicate Tumors from Peripheral and Central Regions,
    Small. 2015 Apr 28. DOI: 10.1002/smll.201500324.
  • Taruttis A et al.,
    Mesoscopic and Macroscopic Optoacoustic Imaging of Cancer,
    Cancer Res. 2015 Apr 2. DOI: 10.1158/0008-5472.CAN-14-2522.
  • Ye S et al.,
    Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications,
    Adv. Funct. Mater. (2015). DOI: 10.1002/adfm.201404358.
  • Jing Liu et al.,
    Bismuth Sulfide Nanorods as a Precision Nanomedicine for in Vivo Multimodal Imaging-Guided Photothermal Therapy of Tumor,
    ACS Nano. 2015 Jan 27;9(1):696-707. DOI: 10.1021/nn506137n.
  • Balasundaram G et al.,
    Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer,
    Int J Nanomed. 2015:10 387–397. DOI: 10.2147/IJN.S73558
  • Lozano N et al.,
    Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent,
    Int J Pharm. 2014 Oct 23. pii: S0378-5173(14)00768-6. DOI: 10.1016/j.ijpharm.2014.10.045.
  • Shanice V Hudson et al.,
    Targeted Non-invasive Imaging of EGFR-expressing Orthotopic Pancreatic Cancer using Multispectral Optoacoustic Tomography (MSOT)
    Cancer Res. 2014 Sep 12. DOI: 10.1158/0008-5472.CAN-14-1656.
  • Chris Jun Hui Ho et al.,
    Multifunctional Photosensitizer-Based Contrast Agents for Photoacoustic Imaging,
    Scientific Reports 2014. DOI:10.1038/srep05342.
  • Deliolanis NC et al.,
    Deep-Tissue Reporter-Gene Imaging with Fluorescence and Optoacoustic Tomography: A Performance Overview,
    Mol Imaging Biol. 2014 Mar 8. DOI: 10.1007/s11307-014-0728-1.
  • Stritzker J et al.,

    Vaccinia Virus-mediated Melanin Production Allows MR and Optoacoustic Deep Tissue Imaging and Laser-induced Thermotherapy of Cancer,

    PNAS February 26, 2013 vol. 110 no. 9 3316-3320. DOI: 10.1073/pnas.1216916110.
Page layout: 0
Page level: 3